Division

Foundation Stage 1:

Birth to Three: Reacts to changes of amount
Three to Four:
Solve real world mathematical problems with numbers up to 5 .

Foundation Stage 2 Objectives:

Reception:
Explore the composition of numbers to 10.
Early Learning Goal:
Have a deep understanding of numbers to 10 , including the composition.
Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally.
Concrete
Practically halving everyday objects - the
halves halves being the same size. Begin with halving play dough and other items that could be cut, then use hoops / halving mats etc. to separate items.

Finding the other half of everyday shapes to match them e.g. cups, beans

Doubling everyday items e.g. compare bears, counters etc.

Half of ... is ... (adult written)

Doubling e.g. the spots on the ladybird.

$$
1+1=2
$$

$$
2+2=4
$$

Year 1 Objectives:

- solve one-step problems involving division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Develop finding half of numnbers before moving onto finding quarters whole 1/2s	Circle half of the apples.	Half of 8 is 4 . $8 \div 2=4$
	Circle a quarter of the apples.	One quarter of 8 is 2 $8 \div 4=2$
Begin to find half of a quantity using sharing e.g. half of 14 cubes by sharing one at a tie into two sorting dishes.	Share equally between 2.	Half of 14 is 7 14 shared between 2 is 7 .
Grouping: Use concrete and visual arrays/sets of objects to find answers to e.g. 15 girls play a game in teams of 5 . How many groups are there?		Total number of objects \div number in each group $=$ number of groups. There are 3 groups of 5 in 15 , so $15 \div 5=3$

Year 2 Objectives:

Pupils should be taught to:

- recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
- calculate mathematical statements for division within the multiplication tables and write them using the division (\div) and equals (\because) signs
- show that multiplication is commutative but division is not
- solve problems involving division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

20 has been divided into 4 equal groups of 5.		
Link division to multiplication by creating an array and finding 4 realted number sentences.		$\begin{aligned} & 15 \div 3=5 \\ & 15 \div 5=3 \\ & 3 \times 5=15 \\ & 5 \times 3=15 \end{aligned}$
$15 \div 3=$		
Year 3 Objectives:		
Pupils should be taught to: - recall and use division facts for the - write and calculate mathematical st one-digit numbers, using mental and - solve problems, including missing num in which n objects are connected to	3,4 and 8 multiplication tables ements for division using the multiplication tables th rogressing to formal written methods ber problems, involving division, including positive integ objects.	hey know, including for two-digit numbers times saling problems and correspondence problems
Concrete	Pictorial	Abstract
Pupils to understand that division is not commutative. Use the relationship	See above for examples of grouping and sharing using concrete and pictorial resources, and	

of multiplication facts to calculate.	exploring the relatrionship between multiplication and division.	
Pupils begin to explore formal written method, at first with no remainders.	$\begin{array}{r} 69 \div 3=23 \\ 23 \\ 3 \begin{array}{\|ccc} \text { (1) } & 0 & 0 \\ \text { (1) } & 0 & 0 \\ \text { (1) } & \text { (1) } & 0 \\ 0 & 0 \end{array} \end{array}$	$69 \div 3=23$ $\begin{array}{l\|l\|} & 2 \\ 3 \\ 3 & 6 \\ \hline \end{array}$
Progress onto division with remainders, within the ones column so there is no need to exchange when subtracting using a more formal method.	$24 \div 5=4 r 4$	$24 \div 5=4 \mathrm{r} 4$

Year 5 Objectives:

Pupils should be taught to:

- identify multiples and factors, including finding all factor pairs of a number, common factors of two numbers, know and use the vocabulary of prime numbers and establish whether a number up to 100 is prime
- divide numbers mentally drawing upon known facts
- divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- divide whole numbers and those involving decimals by 10,100 and 1000

Concrete	Pictorial	Abstract
Use concrete and pictorial strategies as shown above if pupils require continued support with their understanding.		
Divide 4 digit numbers by 1 digit using a short division and where appropriate, begin to interpret remainers as fractions. Pupils begin to look at and discuss decimals in relation to money.		Pupils supported with multiplication where appropriate by writing the times table at the side of their work. Working towards Pupils encouraged to simplify the remaining fraction where possible.

Year 6 Objectives:

Pupils should be taught to:

- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context

